Построить проекции следующих точек. Построение ортогональных проекций точек

Проецирование точки на три плоскости проекций координатного угла начинают с получения ее изображения на плоскости H - горизонтальной плоскости проекций. Для этого через точку А (рис. 4.12, а) проводят проецирующий луч перпендикулярно плоскости H.

На рисунке перпендикуляр к плоскости Н параллелен оси Oz. Точку пересечения луча с плоскостью Н (точку а) выбирают произ­вольно. Отрезок Аа определяет, на каком расстоянии находится точка А от плоскости Н, указывая тем самым однозначно положение точки А на рисунке по отношению к плоскостям проекций. Точка а является прямоугольной проекцией точки А на плоскость Н и называется горизонтальной проекцией точки А (рис. 4.12, а).

Для получения изображения точки А на плоскости V (рис. 4.12,б) через точку А проводят проецирующий луч перпендикулярно фронтальной плоскости проекций V. На рисунке перпендикуляр к плоскости V параллелен оси Оу. На плоскости Н расстояние от точки А до плоскости V изобразится отрезком аа х, параллельным оси Оу и перпендикулярным оси Ох. Если представить себе, что проецирующий луч и его изображение проводят одновременно в направлении плоскости V, то когда изображение луча пересечет ось Ох в точке а х, луч пересечет плоскость V в точке а". Проведя из точки а х в плоскости V перпендикуляр к оси Ох, который является изображением проецирующего луча Аа на плоскости V, в пересечении с проецирующим лучом получают точку а". Точка а" является фронтальной проекцией точки А, т. е. ее изображением на плоскости V.

Изображение точки А на профильной плоскости проекций (рис. 4.12, в) строят с помощью проецирующего луча, перпендикулярного плоскости W. На рисунке перпендикуляр к плоскости W параллелен оси Ох. Проецирующий луч от точки А до плоскости W на плоскости Н изобразится отрезком аа у, параллельным оси Ох и перпендикулярным оси Оу. Из точки Оу параллельно оси Oz и перпендикулярно оси Оу строят изображение проецирующего луча аА и в пересечении с проецирующим лучом получают точку а". Точка а" является профильной проекцией точки А, т. е. изображением точки А на плоскости W.

Точку а" можно построить, проведя от точки а" отрезок а"а z (изображение проецирующего луча Аа" на плоскости V) параллельно оси Ох, а от точки а z - отрезок а"а z параллельно оси Оу до пересечения с проецирующим лучом.

Получив три проекции точки А на плоскостях проекций, координатный угол развертывают в одну плоскость, как показано на рис. 4.11,б, вместе с проекциями точки А и проецирующих лучей, а точку А и проецирующие лучи Аа, Аа" и Аа" убирают. Края совмещенных плоскостей проекций не проводят, а проводят только оси проекций Oz, Оу и Ох, Оу 1 (рис. 4.13).

Анализ ортогонального чертежа точки показывает, что три расстояния - Аа", Аа и Аа" (рис. 4.12, в), характеризующие положение точки А в пространстве, можно определить, отбросив сам объект проецирования - точку А, на развернутом в одну плоскость координатном угле (рис. 4.13). Отрезки а"а z , аа y и Оа х равны Аа" как противоположные стороны соответствующих прямоугольников (рис. 4.12,в и 4.13). Они определяют расстояние, на котором находится точка А от профильной плоскости проекций. Отрезки а"а х, а"а у1 и Оа у равны отрезку Аа, определяют расстояние от точки А до горизонтальной плоскости проекций, отрезки аа х, а"а z и Оа y 1 равны отрезку Аа", определяющему расстояние от точки А до фронтальной плоскости проекций.

Отрезки Оа х, Оа у и Оа z , расположенные на осях проекций, являются графическим выражением размеров координат X, Y и Z точки А. Координаты точки обозначают с индексом соответствующей буквы. Измерив величину этих отрезков, можно определить положение точки в пространстве, т. е. задать координаты точки.

На эпюре отрезки а"а х и аа х располагаются как одна линия, перпендикулярная к оси Ох а отрезки а"а z и a"a z - к оси Оz. Эти лини называются линиями проекционной связи. Они пересекают оси проекций в точках а х и а z соответственно. Линия проекционной связи, соединяющая горизонтальную проекцию точки А с профильной, оказалась «разрезанной» в точке а у.

Две проекции одной и той же точки всегда располагаются на одной линии проекционной связи, перпендикулярной к оси проекций.

Для представления положения точки в пространстве достаточно двух ее проекций и заданного начала координат (точка О) На рис. 4.14, б две проекции точки полностью определяют ее положение в пространстве По этим двум проекциям можно построит профильную проекцию точки А. Поэтому в дальнейшем, если не будет необходимости в профильной проекции, эпюры будут построены на двух плоскостях проекций: V и Н.

Рис. 4.14. Рис. 4.15.

Рассмотрим несколько примеров построения и чтения чертежа точки.

Пример 1. Определение координат точки J заданной на эпюре двумя проекциях (рис. 4.14). Измеряются три отрезка: отрезок Ов Х (координата X), отрезок b Х b (координата Y) и отрезок b Х b" (координата Z). Координаты записывают в следующем п рядке: X, Y и Z, после буквенного обозначения точки, например, В20; 30; 15.

Пример 2 . Построение точки по заданным координатам. Точка С задана координатами С30; 10; 40. На оси Ох (рис. 4.15) находят точку с х, в которой линия проекционной связи пересекает ось проекций. Для этого по оси Ох от начала координат (точка О) откладывают координату X (размер 30) и получают точку с х. Через эту точку перпендикулярно оси Ох проводят линию проекционной связи и от точки вниз откладывают координату У (размер 10), получают точку с - горизонтальную проекцию точки С. Вверх от точки с х по линии проекционной связи откладывают координату Z (размер 40), получают точку с" - фронтальную проекцию точки С.

Пример 3 . Построение профильной проекции точки по заданным проекциям. Заданы проекции точки D - d и d". Через точку О проводят оси проекций Oz, Oy и Оу 1 (рис. 4.16, а). Для построения профильной проекции точки D отточки d" проводят линию проекционной связи, перпендикулярную оси Oz, и продолжают ее вправо за ось Oz. На этой линии будет располагаться профильная проекция точки D. Она будет находиться на таком расстоянии от оси Oz, на каком горизонтальная проекция точки d располагается: от оси Ох, т. е. на расстоянии dd x . Отрезки d z d" и dd x одинаковы, так как определяют одно и то же расстояние - расстояние от точки D до фронтальной плоскости проекций. Это расстояние является координатой У точки D.

Графически отрезок d z d" строят перенесением отрезка dd x с горизонтальной плоскости проекций на профильную. Для этого проводят линию проекционной связи параллельно оси Ох, получают на оси Оу точку d y (рис. 4.16,б). Затем переносят размер отрезка Od y на ось Оу 1 , проведя из точки О дугу радиусом, равным отрезку Od y , до пересечения с осью Оу 1 (рис. 4.16,б), получают точку dy 1 . Эту точку можно построить и как показано на рис. 4.16, в, проведя прямую под углом 45° к оси Оу из точки d y . Из точки d y1 проводят линию проекционной связи параллельно оси Oz и на ней откладывают отрезок, равный отрезку d"d x , получают точку d".

Перенос величины отрезка d x d на профильную плоскость проекций можно осуществить с помощью постоянной прямой чертежа (рис. 4.16, г). В этом случае линию проекционной связи dd y проводят через горизонтальную проекцию точки параллельно оси Оу 1 до пересечения с постоянной прямой, а затем параллельно оси Оу до пересечения с продолжением линии проекционной связи d"d z .

Частные случаи расположения точек относительно плоскостей проекций

Положение точки относительно плоскости проекций определяется соответствующей координатой, т. е. величиной отрезка линии проекционной связи от оси Ох до соответствующей проекции. На рис. 4.17 координата У точки А определяется отрезком аа х - расстояние от точки А до плоскости V. Координата Z точки А определяется отрезком а"а х - расстояние от точки А до плоскости Н. Если одна из координат равна нулю, то точка расположена на плоскости проекций. На рис. 4.17 приведены примеры различного расположения точек относительно плоскостей проекций. Координата Z точки В равна нулю, точка находится в плоскости Н. Ее фронтальная проекция находится на оси Ох и совпадает с точкой b х. Координата У точки С равна нулю, точка располагается на плоскости V, ее горизонтальная проекция с находится на оси Ох и совпадает с точкой с х.

Следовательно, если точка находится на плоскости проекций, то одна из проекций этой точки лежит на оси проекций.

На рис. 4.17 координаты Z и Y точки D равны нулю, следовательно, точка D находится на оси проекций Ох и две ее проекции совпадают.

ПРОЕЦИРОВАНИЕ ТОЧКИ НА ДВЕ ПЛОСКОСТИ ПРОЕКЦИЙ

Образование отрезка прямой линии АА 1 можно представить как результат перемещения точки А в какой-либо плоскости Н (рис. 84, а), а образование плоскости - как перемещение отрезка прямой линии АВ (рис. 84, б).

Точка - основной геометрический элемент линии и поверхности, поэтому изучение прямоугольного проецирования предмета начинается с построения прямоугольных проекций точки.

В пространство двугранного угла, образованного двумя перпендикулярными плоскостями - фронтальной (вертикальной) плоскостью проекций V и горизонтальной плоскостью проекций Н, поместим точку А (рис. 85, а).

Линия пересечения плоскостей проекций - прямая, которая называется осью проекций и обозначается буквой х.

Плоскость V здесь изображена в виде прямоугольника, а плоскость Н - в виде параллелограмма. Наклонную сторону этого параллелограмма обычно проводят под углом 45° к его горизонтальной стороне. Длина наклонной стороны берется равной 0,5 ее действительной длины.

Из точки А опускают перпендикуляры на плоскости V и Н. Точки а"и а пересечения перпендикуляров с плоскостями проекций V и Н являются прямоугольными проекциями точки А. Фигура Ааа х а" в пространстве - прямоугольник. Сторона аах этого прямоугольника на наглядном изображении уменьшается в 2 раза.

Совместим плоскости Н с плоскостью V ,вращая V вокруг линии пересечения плоскостей х. В результате получается комплексный чертеж точки А (рис. 85, б)

Для упрощения комплексного чертежа границы плоскостей проекций V и Н не указывают (рис. 85, в).

Перпендикуляры, проведенные из точки А к плоскостям проекций, называются проецирующими линиями, а основания этих проецирующих линий - точки а и а" - называются проекциями точки А: а" - фронтальная проекция точки А, а - горизонтальная проекция точки А.

Линия а" а называется вертикальной линией проекционной связи.

Расположение проекции точки на комплексном чертеже зависит от положения этой точки в пространстве.

Если точка А лежит на горизонтальной плоскости проекций Н (рис. 86, а), то ее горизонтальная проекция а совпадает с заданной точкой, а фронтальная проекция а" располагается на оси При расположении точки В на фронтальной плоскости проекций V ее фронтальная проекция совпадает с этой точкой, а горизонтальная проекция лежит на оси х. Горизонтальная и фронтальная проекции заданной точки С, лежащей на оси х, совпадают с этой точкой. Комплексный чертеж точек А, В и С показан на рис. 86, б.

ПРОЕЦИРОВАНИЕ ТОЧКИ НА ТРИ ПЛОСКОСТИ ПРОЕКЦИЙ

В тех случаях, когда по двум проекциям нельзя представить себе форму предмета, его проецируют на три плоскости проекций. В этом случае вводится профильная плоскость проекций W, перпендикулярная плоскостям V и Н. Наглядное изображение системы из трех плоскостей проекций дано на рис. 87, а.

Ребра трехгранного угла (пересечение плоскостей проекций) называются осями проекций и обозначаются x, у и z. Пересечение осей проекций называется началом осей проекций и обозначается буквой О. Опустим из точки А перпендикуляр на плоскость проекций W и, отметив основание перпендикуляра буквой а", получим профильную проекцию точки А.

Для получения комплексного чертежа точки А плоскости Н и W совмещают с плоскостью V, вращая их вокруг осей Ох и Oz. Комплексный чертеж точки А показан на рис. 87, б и в.

Отрезки проецирующих линий от точки А до плоскостей проекций называются координатами точки А и обозначаются: х А, у А и z A .

Например, координата z A точки А, равная отрезку а"а х (рис. 88, а и б), есть расстояние от точки А до горизонтальной плоскости проекций Н. Координата у точки А, равная отрезку аа х, есть расстояние от точки А до фронтальной плоскости проекций V. Координата х А, равная отрезку аа у - расстояние от точки А до профильной плоскости проекций W.

Таким образом, расстояние между проекцией точки и осью проекции определяют координаты точки и являются ключом к чтению ее комплексного чертежа. По двум проекциям точки можно определить все три координаты точки.

Если заданы координаты точки А (например, х А =20 мм, у А =22мм и z A = 25 мм), то можно построить три проекции этой точки.

Для этого от начала координат О по направлению оси Oz откладывают вверх координату z A и вниз координату у А.Из концов отложенных отрезков - точек a z и а у (рис. 88, а) - проводят прямые, параллельные оси Ох, и на них откладывают отрезки, равные координате х А. Полученные точки а" и а - фронтальная и горизонтальная проекции точки А.

По двум проекциям а" и а точки А построить ее профильную проекцию можно тремя способами:

1) из начала координат О проводят вспомогательную дугу радиусом Оа у, равным координате (рис. 87, б и в), из полученной точки а у1 проводят прямую, параллельную оси Oz, и откладывают отрезок, равный z A ;

2) из точки а у проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, а), получают точку а у1 и т. д.;

3) из начала координат О проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, б), получают точку а у1 и т. д.

Краткий курс начертательной геометрии

Лекции предназначены для студентов инженерно–технических специальностей

Метод Монжа

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Г. Монжем.
Изложенный Монжем метод - метод ортогонального проецирования, причем берутся две проекции на две взаимно перпендикулярные плоскости проекций, - обеспечивая выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей

Рисунок 1.1 Точка в системе трех плоскостей проекций

Модель трех плоскостей проекций показана на рисунке 1.1. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной. Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3. Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0. Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте. Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают. Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).

Для определения положения прямой в пространстве существуют следующие методы: 1.Двумя точками (А и В). Рассмотрим две точки в пространстве А и В (рис. 2.1). Через эти точки можно провести прямую линию получим отрезок . Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: <; <; <.

Рисунок 2.1 Определение положения прямой по двум точкам

2. Двумя плоскостями (a; b). Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

3. Точкой и углами наклона к плоскостям проекций. Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве.

В зависимости от положения прямой по отношению к плоскостям проекций она может занимать как общее, так и частные положения. 1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.3.1).

2. Прямые параллельные плоскостям проекций, занимают частное положение в пространстве и называются прямыми уровня. В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:

2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.3.2).

Рисунок 3.2 Горизонтальная прямая

2.2. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями(рис.3.3).

Рисунок 3.3 Фронтальная прямая

2.3. Прямые параллельные профильной плоскости проекций называются профильными (рис. 3.4).

Рисунок 3.4 Профильная прямая

3. Прямые, перпендикулярные плоскостям проекций, называются проецирующими. Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

3.1. Фронтально-проецирующая прямая - АВ (рис. 3.5).

Рисунок 3.5 Фронтально-проецирующая прямая

3.2. Профильно проецирующая прямая - АВ (рис.3.6).

Рисунок 3.6 Профильно-проецирующая прямая

3.3. Горизонтально-проецирующая прямая - АВ (рис.3.7).

Рисунок 3.7 Горизонтально-проецирующая прямая

Плоскость – одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскость обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Некоторые характеристические свойства плоскости: 1. Плоскость есть поверхность, содержащая полностью каждую прямую, соединяющую любые ее точки; 2. Плоскость есть множество точек, равноотстоящих от двух заданных точек.

Способы графического задания плоскостей Положение плоскости в пространстве можно определить:

1. Тремя точками, не лежащими на одной прямой линии (рис.4.1).

Рисунок 4.1 Плоскость заданная тремя точками, не лежащими на одной прямой

2. Прямой линией и точкой, не принадлежащей этой прямой (рис.4.2).

Рисунок 4.2 Плоскость заданная прямой линией и точкой, не принадлежащей этой линии

3. Двумя пересекающимися прямыми (рис.4.3).

Рисунок 4.3 Плоскость заданная двумя пересекающимися прямыми линиями

4. Двумя параллельными прямыми (рис.4.4).

Рисунок 4.4 Плоскость заданная двумя параллельными прямыми линиями

Различное положение плоскости относительно плоскостей проекций

В зависимости от положения плоскости по отношению к плоскостям проекций она может занимать как общее, так и частные положения.

1. Плоскость не перпендикулярная ни одной плоскости проекций называется плоскостью общего положения. Такая плоскость пересекает все плоскости проекций (имеет три следа: - горизонтальный S 1; - фронтальный S 2; - профильный S 3). Следы плоскости общего положения пересекаются попарно на осях в точках ax,ay,az. Эти точки называются точками схода следов, их можно рассматривать как вершины трехгранных углов, образованных данной плоскостью с двумя из трех плоскостей проекций. Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие разноименные проекции лежат на осях (рис.5.1).

2. Плоскости перпендикулярные плоскостям проекций – занимают частное положение в пространстве и называются проецирующими. В зависимости от того, какой плоскости проекций перпендикулярна заданная плоскость, различают:

2.1. Плоскость, перпендикулярная горизонтальной плоскости проекций (S ^П1) , называется горизонтально-проецирующей плоскостью. Горизонтальная проекция такой плоскости представляет собой прямую линию, которая одновременно является её горизонтальным следом. Горизонтальные проекции всех точек любых фигур в этой плоскости совпадают с горизонтальным следом (рис.5.2).

Рисунок 5.2 Горизонтально-проецирующая плоскость

2.2. Плоскость, перпендикулярная фронтальной плоскости проекций (S ^П2) - фронтально-проецирующая плоскость. Фронтальной проекцией плоскости S является прямая линия, совпадающая со следом S 2 (рис.5.3).

Рисунок 5.3 Фронтально-проецирующая плоскость

2.3. Плоскость, перпендикулярная профильной плоскости (S ^П3) - профильно-проецирующая плоскость. Частным случаем такой плоскости является биссекторная плоскость (рис.5.4).

Рисунок 5.4 Профильно-проецирующая плоскость

3. Плоскости параллельные плоскостям проекций – занимают частное положение в пространстве и называются плоскостями уровня. В зависимости от того, какой плоскости параллельны исследуемая плоскость, различают:

3.1. Горизонтальная плоскость - плоскость параллельная горизонтальной плоскости проекций (S //П1) - (S ^П2, S ^П3). Любая фигура в этой плоскости проецируется на плоскость П1 без искажения, а на плоскости П2 и П3 в прямые - следы плоскости S 2 и S 3 (рис.5.5).

Рисунок 5.5 Горизонтальная плоскость

3.2. Фронтальная плоскость - плоскость параллельная фронтальной плоскости проекций (S //П2), (S ^П1, S ^П3). Любая фигура в этой плоскости проецируется на плоскость П2 без искажения, а на плоскости П1 и П3 в прямые - следы плоскости S 1 и S 3 (рис.5.6).

Рисунок 5.6 Фронтальная плоскость

3.3. Профильная плоскость - плоскость параллельная профильной плоскости проекций (S //П3), (S ^П1, S ^П2). Любая фигура в этой плоскости проецируется на плоскость П3 без искажения, а на плоскости П1 и П2 в прямые - следы плоскости S 1 и S 2 (рис.5.7).

Рисунок 5.7 Профильная плоскость

Следы плоскости

Следом плоскости называется линия пересечения плоскости с плоскостями проекций. В зависимости от того с какой из плоскостей проекций пересекается данная, различают: горизонтальный, фронтальный и профильный следы плоскости.

Каждый след плоскости является прямой линией, для построения которых необходимо знать две точки, либо одну точку и направление прямой(как для построения любой прямой). На рисунке 5.8 показано нахождение следов плоскости S (АВС). Фронтальный след плоскости S 2, построен, как прямая соединяющая две точки 12 и 22, являющиеся фронтальными следами соответствующих прямых, принадлежащих плоскости S . Горизонтальный следS 1 – прямая, проходящая через горизонтальный след прямой АВ и S x. Профильный следS 3 – прямая соединяющая точки (S y и S z) пересечения горизонтального и фронтального следов с осями.

Рисунок 5.8 Построение следов плоскости

Определение взаимного положения прямой и плоскости - позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается в следующем: через прямую проведем вспомогательную секущую плоскость Q и установим относительное положение двух прямых a и b, последняя из которых является линией пересечения вспомогательной секущей плоскости Q и данной плоскости T(рис.6.1).

Рисунок 6.1 Метод вспомогательных секущих плоскостей

Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямая а лежит в плоскости T, параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость T. Таким образом возможны три случая относительного расположения прямой и плоскости: Прямая принадлежит плоскости; Прямая параллельна плоскости; Прямая пересекает плоскость, частный случай – прямая перпендикулярна плоскости. Рассмотрим каждый случай.

Прямая линия, принадлежащая плоскости

Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат той же плоскости (рис.6.2).

Задача. Дана плоскость (n,k) и одна проекция прямой m2. Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k. Проекция прямой m2 пересекает прямые n и k в точках В2 и С2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек лежащих на прямых соответственно n и k. Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме прямая принадлежит этой плоскости.

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.6.3).

Задача. Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k. Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1. Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.

Рисунок 6.3 Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости

Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (h//П1)(рис.6.4).

Рисунок 6.4 Горизонталь

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (f//П2)(рис.6.5).

Рисунок 6.5 Фронталь

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (р//П3) (рис.6.6). Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.

Рисунок 6.6 Профильная прямая

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.6.7). Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Рисунок 6.7 Линия наибольшего ската

Взаимное расположение точки и плоскости

Возможны два варианта взаимного расположения точки и плоскости: либо точка принадлежит плоскости, либо нет. Если точка принадлежит плоскости то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну. Рассмотрим пример (рис.6.8): Построение проекции точки А принадлежащей плоскости общего положения заданной двумя параллельными прямыми a(a//b).

Задача. Дано: плоскость T(а,в) и проекция точки А2. Требуется построить проекцию А1 если известно, что точка А лежит в плоскости в,а. Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2. Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А.

Рисунок 6.8. Точка, принадлежащая плоскости

Две плоскости в пространстве могут быть либо взаимно параллельны, в частном случае совпадая друг с другом, либо пересекаться. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей.

1. Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это определение хорошо иллюстрируется задачей, через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми ab (рис.7.1). Задача. Дано: плоскость общего положения, заданную двумя пересекающимися прямыми ab и точка В. Требуется через точку В провести плоскость, параллельную плоскости ab и задать её двумя пересекающимися прямыми c и d. Согласно определения если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости то эти плоскости параллельны между собой. Для того чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования - проекции параллельных прямых - параллельны между собой d||a, с||b; d1||a1,с1||b1; d2||a2 ,с2||b2; d3||a3,с3||b3.

Рисунок 7.1. Параллельные плоскости

2. Пересекающиеся плоскости, частный случай – взаимно перпендикулярные плоскости. Линия пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей. Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис.7.2).

Задача. Дано: плоскость общего положения задана треугольником АВС, а вторая плоскость - горизонтально проецирующая T. Требуется построить линию пересечения плоскостей. Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью T - точка D, прямой (AС) -F. Отрезок определяет линию пересечения плоскостей. Так как T - горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости T1, таким образом остается только построить недостающие проекции на П2 и П3.

Рисунок 7.2. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью

Перейдем к общему случаю. Пусть в пространстве заданы две плоскости общего положения a(m,n) и b (ABC) (рис.7.3).

Рисунок 7.3. Пересечение плоскостей общего положения

Рассмотрим последовательность построения линии пересечения плоскостей a(m//n) и b(АВС). По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости g и d. Найдем линии пересечения этих плоскостей с рассматриваемыми плоскостями. Плоскость g пересекает плоскость a по прямой (12), а плоскость b - по прямой (34). Точка К - точка пересечения этих прямых одновременно принадлежит трем плоскостям a, b и g, являясь таким образом точкой принадлежащей линии пересечения плоскостей a и b. Плоскость d пересекает плоскости a и b по прямым (56) и (7C) соответственно, точка их пересечения М расположена одновременно в трех плоскостях a, b, d и принадлежит прямой линии пересечения плоскостей a и b. Таким образом найдены две точки принадлежащие линии пересечения плоскостей a и b - прямая (КМ).

Некоторого упрощения при построении линии пересечения плоскостей можно достичь, если вспомогательные секущие плоскости проводить через прямые, задающие плоскость.

Взаимно перпендикулярные плоскости. Из стереометрии известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей перпендикулярных данной плоскости a(f,h). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр опущенный из точки А на плоскость a . Для того чтобы из точки А провести плоскость перпендикулярную плоскости заданной двумя пересекающимися прямыми hf необходимо из точки А провести прямую n перпендикулярную плоскости hf (горизонтальная проекция n перпендикулярна горизонтальной проекции горизонтали h, фронтальная проекция n перпендикулярна фронтальной проекции фронтали f). Любая плоскость проходящая через прямую n будет перпендикулярна плоскости hf, поэтому для задания плоскости через точки А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми mn будет перпендикулярна плоскости hf (рис.7.4).

Рисунок 7.4. Взаимно перпендикулярные плоскости

Метод плоскопараллельного перемещения

Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 8.1). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

Рисунок 8.1 Определение натуральной величины отрезка методом плоскопараллельного перемещения

Свойства плоскопараллельного перемещения:

1. При всяком перемещении точек в плоскости параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х.

2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.

Метод вращения вокруг оси перпендикулярной плоскости проекций

Плоскости носитель траекторий перемещения точек параллельны плоскости проекций. Траектория - дуга окружности, центр которой находится на оси перпендикулярной плоскости проекций. Для определения натуральной величины отрезка прямой общего положения АВ (рис. 8.2), выберем ось вращения (i) перпендикулярную горизонтальной плоскости проекций и проходящую через В1. Повернем отрезок так, чтобы он стал параллелен фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x). При этом точка А1 переместиться в А"1, а точка В не изменит своего положения. Положение точки А"2 находится на пересечении фронтальной проекции траектории перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из А"1. Полученная проекция В2 А"2 определяет натуральную величину самого отрезка.

Рисунок 8.2 Определение натуральной величины отрезка методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций

Метод вращения вокруг оси параллельной плоскости проекций

Рассмотрим этот способ на примере определения угла между пересекающимися прямыми (рис.8.3). Рассмотрим две проекции пересекающихся прямых а и в которые пересекаются в точке К. Для то чтобы определить натуральную величину угла между этими прямыми необходимо произвести преобразование ортогональных проекций так, чтобы прямые стали параллельны плоскости проекций. Воспользуемся способом вращения вокруг линии уровня - горизонтали. Проведем произвольно фронтальную проекцию горизонтали h2 параллельно оси Ох, которая пересекает прямые в точках 12 и 22 . Определив проекции 11 и 11, построим горизонтальную проекцию горизонтали h1 . Траектория движения всех точек при вращении вокруг горизонтали - окружность, которая проецируется на плоскость П1 в виде прямой линии перпендикулярной горизонтальной проекции горизонтали.

Рисунок 8.3 Определение угла между пересекающимися прямыми, вращением вокруг оси параллельной горизонтальной плоскости проекций

Таким образом, траектория движения точки К1 определена прямой К1О1, точка О -центр окружности - траектории движения точки К. Чтобы найти радиус этой окружности найдем методом треугольника натуральную величину отрезка КО.Продолжим прямую К1О1 так чтобы |О1К"1|=|КО| . Точка К"1 соответствует точке К, когда прямые а и в лежат в плоскости параллельной П1 и проведенной через горизонталь - ось вращения. С учетом этого через точку К"1 и точки 11 и 21 проведем прямые, которые лежат теперь в плоскости параллельной П1, а следовательно и угол фи - натуральная величина угла между прямыми а и в.

Метод замены плоскостей проекций

Изменение взаимного положения проецируемой фигуры и плоскостей проекций методом перемены плоскостей проекций, достигается путем замены плоскостей П1 и П2 новыми плоскостями П4 (рис. 8.4). Новые плоскости выбираются перпендикулярно старым. Некоторые преобразования проекций требуют двойной замены плоскостей проекций (рис. 8.5). Последовательный переход от одной системы плоскостей проекций другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.

Задача 1: Определить натуральную величину отрезка АВ прямой общего положений (рис. 8.4). Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости. Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1. Введением новой плоскости, переходим из системы плоскостей П1П2 в систему П1П4 , причем в новой системе плоскостей проекция отрезка А4В4 будет натуральной величиной отрезка АВ.

Рисунок 8.4. Определение натуральной величины отрезка прямой методом замены плоскостей проекций

Задача 2: Определить расстояние от точки C до прямой общего положения, заданной отрезком АВ (рис. 8.5).

Рисунок 8.5. Определение натуральной величины отрезка прямой методом замены плоскостей проекций

При прямоугольном проецировании система плоскостей проекций представляет собой две взаимно перпендикулярные плоскости проекций (рис. 2.1). Одну условились располагать горизонтально, а другую - вертикально.

Плоскость проекций, расположенную горизонтально, называют горизонтальной плоскостью проекций и обозначают щ, а плоскость, ей перпендикулярную, - фронтальной плоскостью проекций л 2 . Саму систему плоскостей проекций обозначают п/п 2 . Обычно употребляют сокращенные выражения: плоскость Л[, плоскость п 2 . Линию пересечения плоскостей щ и к 2 называют осью проекций ОХ. Она делит каждую плоскость проекций на две части - полы. Горизонтальная плоскость проекций имеет переднюю и заднюю, а фронтальная - верхнюю и нижнюю полы.

Плоскости щ и п 2 делят пространство на четыре части, называемые четвертями и обозначаемые римскими цифрами I, II, III и IV (см. рис. 2.1). Первой четвертью называют часть пространства, ограниченную верхней полой фронтальной и передней полой горизонтальной плоскостей проекций. Для остальных четвертей пространства определения аналогичны предыдущему.

Все машиностроительные чертежи представляют собой изображения, построенные на одной плоскости. На рис. 2.1 система плоскостей проекций является пространственной. Для перехода к изображениям на одной плоскости условились совмещать плоскости проекций. Обычно плоскость п 2 оставляют неподвижной, а плоскость П поворачивают по направлению, указанному стрелками (см. рис. 2.1), вокруг оси ОХ на угол 90° до совмещения ее с плоскостью п 2 . При таком повороте передняя пола горизонтальной плоскости опускается вниз, а задняя поднимается вверх. После совмещения плоскости имеют вид, изобра-

женный на рис. 2.2. Считают, что плоскости проекций непрозрачны и наблюдатель всегда находится в первой четверти. На рис. 2.2 обозначение невидимых после совмещения пол плоскостей взято в скобки, как это принято для выделения на чертежах невидимых фигур.

Проецируемая точка может находиться в любой четверти пространства или на любой плоскости проекций. Во всех случаях для построения проекций через нее проводят проецирующие прямые и находят точки встречи их с плоскостями 711 и 712, которые и являются проек- циями.

Рассмотрим проецирование точки, расположенной в первой четверти. Заданы система плоскостей проекций 711/712 и точка А (рис. 2.3). Через нее проводят две прямые ЛИНИИ, перпендикулярные ПЛОСКОСТЯМ 71) И 71 2 . Одна из них пересечет плоскость 711 в точке А ", называемой горизонтальной проекцией точки А, а другая - плоскость 71 2 в точке А ", называемой фронтальной проекцией точки А.

Проецирующие прямые АА " и АА " определяют плоскость проецирования а. Она перпендикулярна плоскостям Кип 2 , так как проходит через перпендикуляры к ним и пересекает плоскости проекций по прямым А "Ах и А "А х. Ось проекций ОХ перпендикулярна плоскости ос, как линия пересечения двух плоскостей 71| и 71 2 , перпендикулярных третьей плоскости (а), а следовательно, и любой прямой, лежащей в ней. В частности, 0X1А"А х и 0X1А "А х.

При совмещении плоскостей отрезок А "А х, расположенный на плоскости к 2 , остается неподвижным, а отрезок А "А х вместе с плоскостью 71) будет повернут вокруг оси ОХ до совмещения с плоскостью 71 2 . Вид совмещенных плоскостей проекций вместе с проекциями точки А приведен на рис. 2.4, а. После совмещения точки А ", А х и А " окажутся расположенными на одной прямой, перпендикулярной оси ОХ. Отсюда следует вывод, что две проекции одной и той же точки



лежат на общем перпендикуляре к оси проекции. Этот перпендикуляр, соединяющий две проекции одной и той же точки, называют линией проекционной связи.

Чертеж на рис. 2.4, а можно значительно упростить. Обозначения совмещенных плоскостей проекций на чертежах не отмечают и прямоугольники, условно ограничивающие плоскости проекций, не изображают, так как плоскости безграничны. Упрощенный чертеж точки А (рис. 2.4, б) называют также эпюром (от франц. ?pure - чертеж).

Изображенный на рис. 2.3 четырехугольник AE4 "А Х А " является прямоугольником и его противоположные стороны равны и параллельны. Поэтому расстояние от точки А до плоскости П , измеряемое отрезком АА ", на чертеже определяется отрезком А "А х. Отрезок же А "А х = АА" позволяет судить о расстоянии от точки А до плоскости к 2 . Таким образом, чертеж точки дает полное представление о ее расположении относительно плоскостей проекций. Например, по чертежу (см. рис. 2.4, б) можно утверждать, что точка А расположена в первой четверти и удалена от плоскости п 2 на меньшее расстояние, чем от плоскости тс ь так как А "А х А "А х.

Перейдем к проецированию точки во второй, третьей и четвертой четвертях пространства.


При проецировании точки В, расположенной во второй четверти (рис. 2.5), после совмещения плоскостей обе ее проекции окажутся выше оси ОХ.

Горизонтальная проекция точки С, заданной в третьей четверти (рис. 2.6), расположена выше оси ОХ, а фронтальная - ниже.

Точка Д изображенная на рис. 2.7, расположена в четвертой четверти. После совмещения плоскостей проекций обе ее проекции окажутся ниже оси ОХ.

Сравнивая чертежи точек, находящихся в разных четвертях пространства (см. рис. 2.4-2.7), можно заметить, что для каждой характерно свое расположение проекций относительно оси проекций ОХ.

В частных случаях проецируемая точка может лежать на плоскости проекций. Тогда одна ее проекция совпадает с самой точкой, а другая будет расположена на оси проекций. Например, для точки Е, лежащей на плоскости щ (рис. 2.8), горизонтальная проекция совпадает с самой точкой, а фронтальная находится на оси ОХ. У точки Е, расположенной на плоскости к 2 (рис. 2.9), горизонтальная проекция на оси ОХ, а фронтальная совпадает с самой точкой.

Глава 6. ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ

§ 32. Комплексный чертеж точки

Чтобы построить изображение предмета, сначала изображают отдельные его элементы в виде простейших элементов пространства. Так, изображая геометрическое тело, следует построить его вершины, представленные точками; ребра, представленные прямыми и кривыми линиями; грани, представленные плоскостями и т.д

Правила построения изображений на чертежах в инженерной графике основываются на методе проекций. Одно изображение (проекция) геометрического тела не позволяет судить о его геометрической форме или форме простейших геометрических образов, составляющих это изображение. Таким образом, нельзя судить о положении точки в пространстве по одной ее проекции; положение ее в пространстве определяется двумя проекциями.

Рассмотрим пример построения проекции точки А, расположенной в пространстве двугранного угла (рис. 60). Одну из плоскостей проекции расположим горизонтально, назовем ее горизонтальной плоскостью проекций и обозначим буквой П 1 . Проекции элементов


пространства на ней будем обозначать с индексом 1: А 1 , а 1 , S 1 ... и называть горизонтальными проекциями (точки, прямой, плоскости).

Вторую плоскость расположим вертикально перед наблюдателем, перпендикулярно первой, назовем ее вертикальной плоскостью проекций и обозначим П 2 . Проекции элементов пространства на ней будем обозначать с индексом 2: А 2 , 2 и называть фронтальными проекциями (точки, прямой, плоскости). Линию пересечения плоскостей проекций назовем осью проекций.

Спроецируем точку А ортогонально на обе плоскости проекций:

АА 1 _|_ П 1 ;AА 1 ^П 1 =A 1 ;

АА 2 _|_ П 2 ;AА 2 ^П 2 =A 2 ;

Проецирующие лучи АА 1 и АА 2 взаимно перпендикулярны и создают в пространстве проецирующую плоскость АА 1 АА 2 , перпендикулярную обеим сторонам проекций. Эта плоскость пересекает плоскости проекций по линиям, проходящим через проекции точки А.

Чтобы получить плоский чертеж, совместим горизонтальную плоскость проекций П 1 с фронтальной плоскостью П 2 вращением вокруг оси П 2 /П 1 (рис. 61, а). Тогда обе проекции точки окажутся на одной линии, перпендикулярной оси П 2 /П 1 . Прямая А 1 А 2 , соединяющая горизонтальную А 1 и фронтальную А 2 проекции точки, называется вертикальной линией связи.

Полученный плоский чертеж называется комплексным чертежом. Он представляет собой изображение предмета на нескольких совмещенных плоскостях. Комплексный чертеж, состоящий из двух ортогональных проекций, связанных между собой, называется двухпроекционным. На этом чертеже горизонтальная и фронтальная проекции точки всегда лежат на одной вертикальной линии связи.

Две связанные между собой ортогональные проекции точки однозначно определяют ее положение относительно плоскостей проекций. Если определить положение точки а относительно этих плоскостей (рис. 61, б) ее высотой h (АА 1 =h) и глубиной f(AA 2 =f), то эти величины на комплексном чертеже существуют как отрезки вертикальной линии связи. Это обстоятельство позволяет легко реконструировать чертеж, т. е. определить по чертежу положение точки относительно плоскостей проекций. Для этого достаточно в точке А 2 чертежа восстановить перпендикуляр к плоскости чертежа (считая ее фронтальной) длиной, равной глубине f . Конец этого перпендикуляра определит положение точки А относительно плоскости чертежа.

60.gif

Изображение:

61.gif

Изображение:

7. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

4. Как называется расстояние, определяющее положение точки относительно плоскости проекций П 1 , П 2 ?

7. Как построить дополнительную проекцию точки на плоскости П 4 _|_ П 2 , П 4 _|_ П 1 , П 5 _|_ П 4 ?

9. Как можно построить комплексный чертеж точки по ее координатам?

33. Элементы трехпроекционного комплексного чертежа точки

§ 33. Элементы трехпроекционного комплексного чертежа точки

Для определения положения геометрического тела в пространстве и получения дополнительных сведений на их изображениях может возникнуть необходимость в построении третьей проекции. Тогда третью плоскость проекций располагают справа от наблюдателя перпендикулярно одновременно горизонтальной плоскости проекций П 1 и фронтальной плоскости проекций П 2 (рис. 62, а). В результате пересечения фронтальной П 2 и профильной П 3 плоскостей проекций получаем новую ось П 2 /П 3 , которая располагается на комплексном чертеже параллельно вертикальной линии связи A 1 A 2 (рис. 62, б). Третья проекция точки А - профильная - оказывается связанной с фронтальной проекцией А 2 новой линией связи, которую называют горизонталь-

Рис. 62

ной. Фронтальная и профильная проекции точки всегда лежат на одной горизонтальной линии связи. Причем A 1 A 2 _|_ А 2 А 1 и А 2 А 3 , _| _ П 2 /П 3 .

Положение точки в пространстве в этом случае характеризуется ее широтой - расстоянием от нее до профильной плоскости проекций П 3 , которое обозначим буквой р.

Полученный комплексный чертеж точки называется трехпроек-ционным.

В трехпроекционном чертеже глубина точки АА 2 проецируется без искажений на плоскости П 1 и П 2 (рис. 62, а). Это обстоятельство позволяет построить третью - фронтальную проекцию точки А по ее горизонтальной А 1 и фронтальной А 2 проекциям (рис. 62, в). Для этого через фронтальную проекцию точки нужно провести горизонтальную линию связи A 2 A 3 _|_A 2 A 1 . Затем в любом месте на чертеже провести ось проекций П 2 /П 3 _|_ А 2 А 3 , измерить глубину f точки на горизонтальном поле проекции и отложить ее по горизонтальной линии связи от оси проекций П 2 /П 3 . Получим профильную проекцию А 3 точки А.

Таким образом, на комплексном чертеже, состоящем из трех ортогональных проекций точки, две проекции находятся на одной линии связи; линии связи перпендикулярны соответствующим осям проекций; две проекции точки вполне определяют положение ее третьей проекции.

Необходимо отметить, что на комплексных чертежах, как правило, не ограничивают плоскости проекций и положение их задают осями (рис. 62, в). В тех случаях, когда условиями задачи этого не требу-

ется, проекции точек могут быть даны без изображения осей (рис. 63, а, б). Такая система называется безосновой. Линии связи могут также проводиться с разрывом (рис. 63, б).

62.gif

Изображение:

63.gif

Изображение:

34. Положение точки в пространстве трехмерного угла

§ 34. Положение точки в пространстве трехмерного угла

Расположение проекций точек на комплексном чертеже зависит от положения точки в пространстве трехмерного угла. Рассмотрим некоторые случаи:

  • точка расположена в пространстве (см. рис. 62). В этом случае она имеет глубину, высоту и широту;
  • точка расположена на плоскости проекций П 1 - она не имеет высоты, П 2 - не имеет глубины, Пз - не имеет широты;
  • точка расположена на оси проекций, П 2 /П 1 не имеет глубины и высоты, П 2 /П 3 - не имеет глубины и широты и П 1 /П 3 не имеет высоты и широты.

35. Конкурирующие точки

§ 35. Конкурирующие точки

Две точки в пространстве могут быть расположены по-разному. В отдельном случае они могут быть расположены так, что проекции их на какой-нибудь плоскости проекций совпадают. Такие точки называются конкурирующими. На рис. 64, а приведен комплексный чертеж точек А и В. Они расположены так, что проекции их совпадают на плоскости П 1 [А 1 == В 1 ]. Такие точки называются горизонтально конкурирующими. Если проекции точек A и В совпадают на плоскости

П 2 (рис. 64, б), они называются фронтально конкурирующими. И если проекции точек А и В совпадают на плоскости П 3 [А 3 == B 3 ] (рис. 64, в), они называются профильно конкурирующими.

По конкурирующим точкам определяют видимость на чертеже. У горизонтально конкурирующих точек будет видима та, у которой больше высота, у фронтально конкурирующих - та, у которой больше глубина, и у профильно конкурирующих - та, у которой больше широта.

64.gif

Изображение:

36. Замена плоскостей проекций

§ 36. Замена плоскостей проекций

Свойства трехпроекционного чертежа точки позволяют по горизонтальной и фронтальной ее проекциям строить третью на другие плоскости проекций, введенные взамен заданных.

На рис. 65, а показаны точка А и ее проекции - горизонтальная А 1 и фронтальная А 2 . По условиям задачи необходимо произвести замену плоскостей П 2 . Новую плоскость проекции обозначим П 4 и расположим перпендикулярно П 1 . На пересечении плоскостей П 1 и П 4 получим новую ось П 1 /П 4 . Новая проекция точки А 4 будет расположена на линии связи, проходящей через точку А 1 и перпендикулярно оси П 1 /П 4 .

Поскольку новая плоскость П 4 заменяет фронтальную плоскость проекции П 2 , высота точки А изображается одинаково в натуральную величину и на плоскости П 2 , и на плоскости П 4 .

Это обстоятельство позволяет определить положение проекции A 4 , в системе плоскостей П 1 _|_ П 4 (рис. 65, б) на комплексном чертеже. Для этого достаточно измерить высоту точки на заменяемой плоско-

сти проекции П 2 , отложить ее на новой линии связи от новой оси проекций - и новая проекция точки А 4 будет построена.

Если новую плоскость проекций ввести взамен горизонтальной плоскости проекций, т. е. П 4 _|_ П 2 (рис. 66, а), тогда в новой системе плоскостей новая проекция точки будет находиться на одной линии связи с фронтальной проекцией, причем А 2 А 4 _|_. В этом случае глубина точки одинакова и на плоскости П 1 , и на плоскости П 4 . На этом основании строят А 4 (рис. 66, б) на линии связи А 2 А 4 на таком расстоянии от новой оси П 1 /П 4 на каком А 1 находится от оси П 2 /П 1 .

Как уже отмечалось, построение новых дополнительных проекций всегда связано с конкретными задачами. В дальнейшем будет рассмотрен ряд метрических и позиционных задач, решаемых с применением метода замены плоскостей проекций. В задачах, где введение одной дополнительной плоскости не даст желаемого результата, вводят еще одну дополнительную плоскость, которую обозначают П 5 . Ее располагают перпендикулярно уже введенной плоскости П 4 (рис. 67, а), т. е. П 5 П 4 и производят построение, аналогичное ранее рассмотренным. Теперь расстояния измеряют на заменяемой второй из основных плоскостей проекций (на рис. 67, б на плоскости П 1) и откладывают их на новой линии связи А 4 А 5 , от новой оси проекций П 5 /П 4 . В новой системе плоскостей П 4 П 5 получают новый двухпроекционный чертеж, состоящий из ортогональных проекций А 4 и А 5 , связанных линией связи

Питание